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Abstract—The integration of artificial intelligence (AI) in
healthcare, particularly through the use of large language mod-
els (LLMs) and visual-language models, has shown promise
in enhancing diagnostic accuracy in dermatology. This study
investigates the diagnostic capabilities of proprietary and open-
source visual-language models, focusing on their performance in
classifying dermatological conditions across different skin tones
and the impact of various prompting strategies. We utilize the
Diverse Dermatology Images (DDI) dataset to evaluate two visual-
language models (Anthropic’s Claude 3 and LLaVA) via three
prompting techniques (zero-shot, few-shot, and chain-of-thought)
to assess the models ability to classify skin lesions as malignant or
benign. The results indicate that the Claude 3 models outperform
LLaVA, with chain-of-thought prompting yielding the highest
recall and accuracy. Interestingly, few-shot prompting did not
enhance performance, often leading to a bias towards malignant
classifications. Precision varied significantly across skin tones,
with the highest precision for medium skin tones, while accuracy
and recall rates were consistent across all skin tones. This study
underscores the importance of prompting techniques in model
performance and highlights the need for careful consideration of
model biases, especially in high-stakes domains like healthcare.

Index Terms—yvisual-language models, medical Al, dermatol-
ogy, racial bias

I. INTRODUCTION

Artificial intelligence (AI) is increasingly being used in
healthcare settings to develop better diagnostic tools. Recently,
chat-bots and medical large language models (LLMs) such as
DxGPT (using OpenAI’'s GPT-4 base model) and Google’s
Med-PalLM-2, which are fine-tuned on electronic health record
(EHR) data, have started being deployed in hospitals [1], [2].
Furthermore, an exploratory survey found that almost two-
thirds of dermatologists are already using LLMs in their prac-
tice, most of them using chatGPT, with the majority using it
at least once a month for patient care [3]. However, healthcare
disparities in the Canadian and American medical systems are
being encoded into the models. LLMs have been shown to
encode racial and gender stereotypes [4] and propagate race-
based medicine [5], and their limitations in clinical settings
have not been thoroughly researched despite their increased
development and use [6]. In dermatology, Al models have
been shown to perform poorly on darker skin tones due to
datasets consisting predominantly of picture with light skin
[7].

At the same time, healthcare is inherently a multi-modal
field — medical professionals consider the patient’s movements,

MRI/CT scans, and even their speech to aid them in diagnosis
[8]. To this end, many LLMs (and medical language models)
are increasingly turning to multi-modality, with the ability to
take in and produce both text and image content. Advance-
ments towards multi-modality are said to potentially enable
“holistic patient assessments” [8]. However, issues of racial
and gender bias are still prevalent in visual-language models
[9], [10] . Due to such rapid and brand-new advancements,
there have not been similar assessments of applications in the
medical domain.

Most current state of the art LLMs and visual-language
models are propriety, with OpenAI’'s GPT-4V, Google’s Gem-
ini, or Anthropic’s Claude. However, there are limitations to
using closed-source models, including lack of information
about training data or model architecture, user cost, and
barriers to rigorous evaluation. Open-source models, on the
other hand, provide detailed information about the training
data and model but are less popular due to lack of accessibility.

With the recent popularity of LLMs, prompt engineering
has become an emerging field that focuses on the design,
refinement, and implementation of prompts, or user input,
to help guide a model’s output. This helps users effectively
interact with language models to increase performance for
the task at hand. Furthermore, prompt engineering may be an
increasingly important skill for medical professionals due to its
potential to improve the efficiency, accuracy, and effectiveness
of health care delivery [11].

Thus, we would like to explore and answer the following
research questions:

1) How do proprietary and open-source visual-language
models compare in diagnosing dermatological condi-
tions?

2) How much of an effect do different prompting strategies
have on the accuracy of dermatology diagnosis?

3) How do visual-language models perform in diagnosing
dermatological conditions for patients of different skin
tones?

To do this, we will examine the performance two visual-
language models (Claude 3 and LLaVA) at classifying images
of skin lesions as malignant of benign via three prompting
techniques.



II. BACKGROUND

With the recent popularity of LLMs due to OpenAl’s

chatGPT, an increased effort has been put into looking at
applications to healthcare. The integration of large language
models (LLMs) into healthcare has been a subject of signif-
icant interest due to their potential to revolutionize various
aspects of medical practice. These models, which include
clinical language models (CLaMs) and foundation models for
electronic medical records (FEMRs), have shown promise in
tasks such as clinical documentation, patient education, and
decision support [6]. However, their deployment raises critical
ethical considerations, including issues of bias, data privacy,
and the potential for misinformation. This section synthesizes
recent research on the use of LLMs in healthcare, focusing on
their applications, limitations, and the ethical implications of
their deployment.
LLMs have been applied to a range of tasks in health-
care, including facilitating clinical documentation, creating
discharge summaries, and aiding in patient-clinician communi-
cation [12]. Specialized medical datasets such as MedMCQA,
PubMedQA, and MultiMedBench have been used to evaluate
LLMs, with models like GPT (BioGPT, BioMedLM 2.7B),
BERT (PubMedBERT, ClinicalBERT, BioLinkBERT), and
PalLM (MedPalLM) showing potential in augmenting clinical
workflow support tools [13]. Recent developments in multi-
modal language models, such as Med-PaLM M, LLaVa-Med,
SkinGPT4, and MiniGPT4, aim to extend the capabilities of
LLMs by incorporating various data types beyond text, such
as images and structured patient data [13]. Furthermore, the
public is also using LLMs frequently to access healthcare
information - a survey found that 74% of participants were
using LLMs for healthcare advice [14].

A. Ethical Implications

Despite their potential, LLMs face several limitations. A
significant concern is the perpetuation of race-based medicine,
as evidenced by a study testing models like ChatGPT, Bard,
GPT-4, and Claude, which revealed their tendency to propagate
race-based falsehoods [5]. Additionally, LLMs can suffer from
biases due to the datasets they are trained on, leading to
issues such as hallucinations and the exacerbation of users’
misconceptions [13]. The evaluation of these models also
presents challenges, as current metrics may not adequately
assess their viability in clinical settings [6]. Furthermore, the
static nature of LLMs can ’lock in’ dominant narratives and
biases, making it difficult to adapt to new best practices [15].

The ethical implications of LLMs in healthcare are also
multifaceted. Data privacy and security are paramount con-
cerns, especially when models are trained on confidential
electronic health records (EHR) patient data [6]. The potential
for LLMs to spread misinformation is another critical issue,
as demonstrated by ChatGPT’s ability to provide superficially
accurate but potentially misleading information [14]. The
fairness and bias of LLMs have been a focal point of research,
with studies employing various methods to improve Al fair-
ness, such as importance using ’importance weighting’ during

preprocessing, data augmentation, resampling - this includes
assessing the covariance between protected attributes (race,
gender, disability, etc.) and signed distance from sample’s
feature vectors to decision boundary [16]. Additionally, the
use of LLMs in medical education raises concerns about the
potential decrease in critical thinking skills among students
[17].

There are also many regulatory concerns of LLMs in health-
care. The FDA’s current framework for Software as a Medical
Device (SaMD) categorizes devices based on risk level but
has yet to address the regulation of adaptive algorithms and
auto-didactic functionalities in deep learning methods [12].
Auditing procedures for LLMs must include elements of both
governance and technology audits to ensure ethical, legal, and
technically robust applications [18].

Furthermore, improving the explainability of decisions and
outputs made by LLMs are challenging. The black-box nature
of these models can make it difficult for practitioners and
patients to understand how decisions are made, which is
crucial for trust and accountability in healthcare [19].

On the other hand, LLMs can also be used to improve
health equity, according to [20]. LLMs can be used to detect
human bias in clinical notes (from biased, prejudiced health-
care practitioners), and further use it to mitigate these biases
from the notes. They could also be used to extract equity-
relevant information (e.g., race, insurance, employment) from
unstructured clinical notes to perform further subgroup anal-
ysis on. For patients under clinical care, LLMs can help
them decipher medical terminology and increase accessibility
to the field. Lastly, LLMs can also help match patients to
clinical trials. Similarly, LLMs seem to also have a potential to
improve maternal care [21]. Through a survey amongst various
stakeholders, including birthing people, doulas, and medical
professionals, [21] formulated guiding principles for practi-
tioners. This included centering the birthing person’s agency
and autonomy, using NLP to aid healthcare practitioners rather
than automating their work (e.g., by decreasing administrative
tasks), as well as assessing the power dynamics within the
care team. They further found that many stakeholders had
extremely positive impressions of the use of LLMs and NLP
techniques in maternal care.

LLMs hold significant promise for improving healthcare
delivery and patient outcomes. However, their deployment
must be approached with caution, considering the ethical
implications and limitations of the technology. Future research
should focus on developing robust evaluation frameworks,
enhancing the fairness and bias mitigation of LLMs, and
establishing clear regulatory guidelines to ensure the safe and
responsible use of these models in healthcare settings.

B. Visual-Language Models in Healthcare

Visual-language models represent an evolution in founda-
tion models, which traditionally have been trained on text data.
The advent of multi-modal large language models (LLMs) in
healthcare promises to enhance the capabilities of foundation
models by integrating various forms of data including imaging



(e.g., MRI/CT scans, X-ray, photos of skin conditions), audio
(e.g., heart/lung sounds, patient vocals, sleep patterns), and
video [11]. By incorporating multi-modal data, these models
can potentially provide more comprehensive and accurate
insights into patient care [19]. For instance, models like Med-
PalLM M, LLaVa-Med, SkinGPT4, and MiniGPT4 are at the
forefront of this development, aiming to leverage the rich
information available in electronic medical records (EMRs)
and other healthcare data sources [6], [13].

However, the deployment of such models similarly raises
ethical concerns that must be addressed to ensure their respon-
sible use in healthcare settings. One of the primary concerns
is the perpetuation of biases. Multi-modal models are not
immune to the biases present in their training data, which can
lead to discriminatory practices and reinforce existing social
inequalities [9], [10] . The use of biased datasets can result in
models that perform unequally across different demographic
groups, potentially exacerbating healthcare disparities.

C. Al in Dermatology

The use of artificial intelligence (AI) in dermatology has
the potential to significantly improve access to care and assist
in the diagnosis of skin diseases, particularly in areas with a
shortage of specialists and long wait times for evaluations [7].
Al diagnostic tools and decision support systems are being
developed to help triage skin lesions and aid non-specialist
physicians in identifying skin diseases and potential malig-
nancies [7]. There has also been an increasing development
of Al tools for dermatological diagnoses — This includes
Google’s “Al-powered dermatology assist tool” [22] and an
Al dermatologist skin scanner [7].

At the same time, there are many limitations in most
dermatology Al tools today. One major concern is the lim-
ited systematic evaluation of dermatology Al models using
independent, real-world data. Many models are trained and
tested on datasets that are not representative of the diver-
sity seen in clinical practice, such as the International Skin
Imaging Collaboration (ISIC) dataset, which lacks images
of inflammatory diseases, uncommon diseases, and diverse
skin tones [7]. The balance between the analytical strengths
of AI and its shortcomings must be carefully managed by
healthcare professionals. To this end, the American Academy
of Dermatology has established a task force on augmented
intelligence to ensure that Al technologies are used to assist
rather than replace human intelligence in dermatology [3].

Foundation models represent a new paradigm in Al offering
versatile capabilities across a range of tasks. These models,
including large language models and multi-modal models,
have been applied to dermatology for various purposes, from
administrative tasks to answering specific dermatological ques-
tions [23]. For example, SkinGPT4 is the ”first interactive
dermatology diagnostic system based on multimodal large
language models” [13]. However, it is crucial for clinicians and
dermatologists to understand the development, capabilities,
and limitations of these models to effectively integrate them
into dermatological care.

III. METHODS
A. Diverse Dermatology Images Dataset

The dataset used will be the Diverse Dermatology Images
(DDI) dataset curated by Daneshjou et al. [7] to combat the
lack of diversity in current dermatology datasets. It is the
first “publicly available, expertly curated, and pathologically
confirmed image dataset with diverse skin tones” and contains
a total of 656 images from pathology reports in Stanford
University clinics between 2010 and 2020 [7].

The Fitzpatrick Skin Type (FST) scale is used to classify
the skin tone for a given image. Developed in 1975 by
Thomas B. Fitzpatrick for determining the correct dosage of
oral ultraviolet A to treat psoriasis, which is dependent on
the patient’s skin tone [24]. FST is a numerical classification,
from I to VI where I is the lightest skin tone and VI is the
darkest skin tone. The skin tone is determined by the criteria
outlined in Table I. The DDI dataset categorized images into
three classes: FST I/II, FST III/IV, and FST V/VI. There are
208 images of FST I/II, 241 images of FST III/IV, and 207
images of FST V/VL

The dataset was designed to examine potential biases in
dermatology Al algorithms, and was curated from images of
lesions diagnosed in Stanford Clinics from 2010 to 2020. The
FST was based on the patient’s chart, reviewed by two board-
certified dermatologists. The main motivation for this work
was to compare performance of Al models on different skin
tones and on uncommon disease types. For this reason, the
images were taken from patients in a similar age group.

Each image is also labelled as benign or malignant based on
dermatologist inspection of the images and biopsy of the given
lesion. Approximately 74% (485 images) of the dataset is
classified as benign. The dataset is also labelled by the specific
disease shown in each image, and there are 78 unique diseases
present. However, the dataset is tailored toward algorithms for
triaging malignant from benign lesions since that is a common
task in dermatology AI. Furthermore, extra complications
arise in prompting language models if there are 78 different
categories to choose from. For these reasons, we evaluated
vision-language models on a binary classification task using
the malignancy label.

TABLE I
OVERVIEW OF FITZPATRICK SKIN TYPES (FST) AND ITS CRITERIA

Fitzpatrick Scale Criteria
I always burns, never tans
I usually burns, tans minimally
1 sometimes mild burn, tans uniformly
v burns minimally, always tans well
A% very rarely burns, tans very easily
VI never burns

B. Models

We will be assessing performance of two visual-language
models: Anthropic’s Claude 3 [25] and LLaVA (Large Lan-
guage and Vision Assistant) [26].



The Claude 3 model family is the latest iteration of An-
thropic’s Claude models. It consists of three models, each with
different levels of ’capabilities’. Claude Opus is the largest,
most ’intelligent’” model with state of the art performance
on complex tasks, Claude Sonnet is a smaller model with
faster response times, and Claude Haiku is their fastest, most
compact model. Opus has been shown to outperform GPT-4
and Gemini Pro in common evaluation benchmarks including
MMLU, GPQA, and GSM8K. On the HuggingFace WildVi-
sion Arena Leaderboard [27], Claude Opus places third overall
in comparison to other models, Sonnet ranks 6" and Haiku
ranks 9", Note that these models are proprietary, with the
training data and model architecture of both models publicly
unavailable so we have no way of verifying what exactly
makes Opus a ’better’ model than Sonnet or Haiku.

LLaVA is a large multimodal model developed by re-
searchers to explore the use of synthetic data to train models.
The model connects a vision encoder and LLM for general-
purpose “visual and language understanding”, and is tuned
on data generated by language-only GPT-4. They assessed
the performance of LLaVA in instruction-following and visual
reasoning capabilities, and found that it sometimes outper-
formed multimodal GPT-4 on unseen images. They also fine-
tuned on a on multimodal science question-answer reasoning
benchmark, which resulted in state-of-the-art performance on
the testing data. The model is also publicly available, includ-
ing GPT-4 generated visual instruction tuning data, model
architecture, and code. The open-source nature of the model
allowed other researchers to iterate and improve upon it,
and four varieties of LLaVA rank on the WildVision Arena
Leaderboard. The specific version we use in our analysis is
LLaVA-1.5 7B parameter model (’llava-hf/llava-1.5-7b-hf” on
HuggingFace), which is modified slightly from the original
LLaVA but achieves state-of-the-art on 11 benchmarks.

C. Experimental Approach

We use three different prompting techniques on the four
models described above: zero-shot, few-shot, and chain-of-
thought prompting. Zero-shot prompting is when you simply
provide a description of the task you want the model to per-
form, often in natural language. This is the most common type
of prompting used, and contains no examples of the task in the
prompt. On the other hand, few-shot prompting first provides
some examples of the task at hand to help guide the model.
After seeing these few examples, the model is then asked to
perform the same task on new, unseen data. This is said to help
’fine-tune’ the model to perform better on the task at hand.
Lastly, chain-of-thought prompting involves asking the model
to generate intermediate steps or reasoning paths that lead to
the final answer, rather than attempting to produce the answer
directly. This is said to mimic the way humans solve problems
by breaking them down into smaller, more manageable parts
and considering various aspects before reaching a conclusion
and is especially useful for more complex tasks.

In our case, we provide an explanation of the task at hand
(classifying the image as A: malignant or B: benign), as well as

the definitions of malignant and benign before every prompt.
Then, for the zero-shot technique, the model is prompted to
answer only with A or B. For the chain-of-thought prompt,
we add an additional sentence in the prompt asking the model
to “always respond by explaining your thought process’. Here,
we prompt the model to provide the answer in an XML block
to make it easier for pre-processing.

Lastly, the few-shot prompt consisted of 6 example images -
one malignant and one benign from each FST class provided
in the dataset. The pictures chosen were labelled 5, 42, 10,
36, 1, 53 in the dataset. After the examples with the images
and malignancy label were shown, the model was prompted
to classify the test image.

These prompt/model pairings were run 3 times each, and the
raw text outputs were preprocessed using two techniques. For
the zero- and few-shot prompts, the model was asked to output
only the diagnosis with no other text. Thus, if the output was
simply A’ (malignant) or B’ (benign), it counted towards the
confusion matrix. Otherwise, the output was considered to be
"unclassified’. For the chain-of-thought prompting, the models
were asked to put the answer in an XML block (e.g., (answer)
A (/answer)). If the model did not provide an answer block,
or if there was any other language inside of the block other
than "A’ or 'B’, the output was considered unclassified.

D. Evaluation

Since this is a binary classification problem, we first
calculated a confusion matrix for each model/prompt pair’s
output: this included true positive (TP), false positive (FP),
true negative (TN), and false negative (FN) rates. Any outputs
with unclear classification were labelled as ’unclassified’ and
removed from the confusion matrix analysis.

From this, we calculate the accuracy, precision, and recall
rate which are outlined in the following equations.

TP + TN

Al =
WY = TP Y FP + TN + FN

TP
TP + FP

TP
TP + FN

In unbalanced datasets such as this one, precision can be a
more informative metric than accuracy because the majority
class (in this case, benign images) can overpower accuracy
if the model classifies all images as benign. Precision allows
us to assess how reliable the model’s positive, or malignant,
predictions are. This is the most important in healthcare set-
tings since there is a much higher cost to incorrectly predicted
malignant skin lesions. Similarly, the recall rate, also known as
sensitivity, is a crucial metric because it measures the ability
of a diagnostic test or a predictive model to correctly identify
images containing a malignant skin lesion.

These metrics are evaluated for each set of outputs. The
average and standard deviation of each metric is calculated
based on all three runs for a model/prompt pair. For further

Precision =

Recall =



analysis of the differences between skin tones, the average
and standard deviation of the predicted classification was
determined for the light, medium, and dark skin tone images.

IV. RESULTS

Here, we first observe the differences in the number of
unclassified images between different models and prompting
techniques. We find that chain-of-thought prompting is the
best technique so use that to determine the difference in
performance between LLaVA and Claude 3 four models.

A. Refusal to Classify

Most model/prompt pairs refused to diagnose some skin
lesions as benign or malignant due to healthcare reasons. Many
of them responded along the lines “Unable to determine if
malignant or benign without in-person medical evaluation”,
suggesting that the user go to a specialist rather than consulting
the model. In other cases, the model did not respond in the
correct formatting (with just A’ or just 'B’). This latter was
less likely to occur in chain-of-thought prompting due to the
use of the answer block, so we examine those first.
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Fig. 1. Unclassified Skin Conditions via Chain-of-Thought Prompt

In Figure 1, we can see the percent of images that were
left unclassified using chain-of-thought prompting for the four
different models, based on the skin tone. The most noticeable
is the high variance in LLaVA in comparison to the Claude
3 models. This suggests that LLaVA may have a higher
temperature than the Claude models. Interestingly, LLaVA
refused to classify the light and medium skin tones much more
than the dark skin tone images, which were only refused less
than 20% of the time. Comparing the Claude models, Sonnet
refuses to diagnose images at a much higher rate than Opus
or Haiku, refusing approximately 40% of the time for all skin
tones. Here, the model refuses to classify images with medium
and dark skin tones at a higher rate than the light skin tones.
Similarly, Haiku refuses to classify dark skin tone images the
most, and is most likely to diagnose the light skin tone images.
Overall, it seems that there aren’t any significant differences

in the rate of refusal between skin tones for all of the models.
It is also unclear why Sonnet refuses to diagnose skin lesions
at a much higher rate when compared to the other models.
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Fig. 2. Unclassified Skin Conditions using Claude 3 Opus

We also wanted to explore how the rate of refusal changed
between different prompting techniques, which is shown in
Figure 2. Zero-shot prompting results in the highest refusal,
and it seems that dark skin tones are refused the least within
that prompt. Few-shot, on the other hand, does not refuse to
diagnose any images - the 6 example images used in the
prompt are the ones included in the bar plot. There is a
drastic difference between prompting techniques, correlating
with findings that few-shot and chain-of-thought prompting
help produce better outputs from language models. Sonnet and
Haiku had similar performances with the different prompting
techniques. Note that we also used zero-shot prompting with
LLaVA but that resulted in all images being classified as
malignant.

B. Malignancy Detection across different Models

Next, we wanted to compare how well the models diagnosed
skin lesions, shown in Figure 3. LLaVA has drastically worse
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Fig. 3. Malignancy Detection via Chain-of-Thought Prompting for different
Models



performance compared to the Claude 3 models, with an
accuracy of only 26.8% and precision of 25.8%. However,
LLaVA has a very high recall rate of 96.5%. This is because
it tends to predict each image is malignant, with an average
of 75.8% of images being classified as such. This may be a
cautionary measure, where it is better to assume that all skin
lesions are malignant and get further examinations rather than
assuming that one is benign.

In comparison, the Claude models all have very similar
performance, with an accuracy of approximately 70% for all
three. Claude Opus has the best precision, of 43.4% but Haiku
is a close competitor. Interestingly, the model performance
does not correlate to size since Sonnet has the worst per-
formance out of all three despite being the middle model.
Furthermore, Opus and Haiku have very similar performance
even though Haiku is a much smaller model, with extremely
fast response times and lower costs. In general, most of the
models have performance that is no better than chance, with
very low precision rates, suggesting that these models may not
be very useful for dermatology questions.

C. Malignancy Detection across different Prompting Tech-
niques

Next, we wanted to explore whether different prompting
techniques impacted performance between skin tones, shown
in Figure 4. We chose to look at Claude 3 Opus because
it had the best performance out of all the models. Zero-
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Fig. 4. Claude 3 Opus Malignancy Detection via different Prompting
Techniques

shot and chain-of-thought prompting have similar accuracy’s
of 70.97% and 70.83%, respectively. Zero-shot prompting
slightly outperforms chain-of-thought in precision. However,
it seems that chain-of-thought prompting results in a much
higher recall rate of 36.4% in comparison to zero-shot’s
20.6%. This suggests that chain-of-thought prompting can
more reliably detect malignant skin lesions in comparison
to zero-shot prompting. This makes sense since diagnosis
is indeed a very complex task, and ’thinking’ through the
different characteristics of a malignant and benign lesion
would increase the odds of correct classification.

Surprisingly, few-shot classification has significantly worse
performance than the other two prompts with an accuracy
of 35.6%. Note that there is also much less variance be-
tween different runs when compared to the other prompting
technique, and a very high recall rate. Few-shot prompting
resulted in an average of 84.1% of skin lesions diagnosed as
malignant. Interestingly, few-shot prompting had very similar
performance to LLaVA which had the worst performance out
of all the models. This is contradictory to the claim that few-
shot prompting helps fine-tune the model to perform better at
the given task. Instead, it seems that few-shot prompting made
the model too brittle.

D. Malignancy Detection across different Skin Tones

Lastly, we wanted to continue exploring whether perfor-
mance differed across skin tones. Since Claude 3 Opus was
found to be the best model, and chain-of-thought prompt-
ing the best technique, we explore classification with that
model/prompt pair first, shown in Figure 5.
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Fig. 5. Claude 3 Opus Malignancy Detection with Chain of Thought
Prompting

The accuracy is pretty similar for the skin tones, all around
70%, with it being slightly higher for the light skin tone.
However, the precision differs a lot for the different skin tones,
with the model performing best on the medium skin tone and
worst on the dark skin tone. This suggests that the model
is better at predicting malignancy for medium skin tones.
However, note that there is a lot more variation in precision
for medium skin tones as well. Interestingly, the model also
has poor precision on light skin tone images. Lastly, the recall
rate is similar for light and medium skin tone images, but has
slightly higher performance for the dark skin tone. However,
note that there seems to be lots of variability between runs
(shown by the error bar).

Next, we also wanted to look at Claude 3 Haiku’s perfor-
mance, shown in Figure 6. The accuracy again is similar for all
skin tones, but does slightly decrease as skin tone gets darker.
The precision again shows that the model performs best at
classifying medium skin tone images compared to light and
dark skin tones. The model still has the worst precision for
dark skin tones, with slightly better precision for light skin
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Fig. 6. Claude 3 Haiku Malignancy Detection with Chain of Thought
Prompting

tones. The recall rate is again similar for all skin tones but
in this model, it has slightly lower performance for dark skin
tones. This suggests that recall is not significantly different
between skin tones, when examining multiple models.

Overall, the models had similar accuracy and recall for
different skin tones but had varying precision. It seems that
the model has highest precision for medium skin tones, and
lowest performance for dark skin tones. Claude 3 Sonnet
also had similar differences in precision between skin tones,
shown in Figure 7 in the Appendix.

Looking at the Claude 3 Opus model with zero- and few-
shot prompting (shown in Figures 8 and 9 in the Appendix),
they also had highest precision for medium skin tones. The
precision for light and dark skin tones was similar but both
worse than medium. The accuracy was again similar for all
skin tones. Interestingly, the recall rate for few-shot prompting
decreased as the skin tone got darker. A similar phenomenon
was observed with LLaVA using chain-of-thought prompting
(Figure 10 in Appendix), where the recall rate was lowest for
dark skin tones. This suggests that the model/prompt pair is
most effective at identifying malignancies in lighter skin tones.

V. DISCUSSION

We evaluated Claude 3 models and LLaVA , and found that
Claude 3 vastly outperforms LLaVA, with the highest accuracy
and precision levels. LLaVA also had more variability in
refusal to classify compared to any of the Claude models.
This may be because the Claude 3 models are newer, whereas
LLaVA is an older model with potentially less training data.
Claude 3 was also finetuned using reinforcement learning with
human feedback (RLHF), whereas LLaVA behaved more as a
pre-trained foundation model. Furthermore, we do not know
the exact data that the Claude 3 models were trained on, and
it may potentially include the DDI dataset. For this reason,
we still may not know how the model would perform in ’the
real world’ at classifying someone’s skin lesion. On the other
hand, we know that LLaVA was not trained on this data and
its performance is based solely on its ability to apply any

knowledge to this domain. Ethical issues can also arise if
information on training data is not publicly available. This is
made more intriguing if you weigh in the fact that it is much
easier to get access to the Claude models through Anthropic’s
APIL. LLaVA, as an open source model, relies heavily on
the researchers and community to make their models easily
accessible. On the other hand, the Claude 3 models cost
money, ranging from $1.25 to $75 per million output tokens
whereas LLaVA is solely dependent on the compute power one
has at hand (which may also be costly). There are different
benefits to both models, and the choice becomes more complex
when factoring in ease of use and cost.

We also explored three prompting techniques and found that
chain-of-thought prompting has the best performance, with
highest recall and accuracy. This technique forces the model
to ’think’ through and defend why or why not the given skin
lesion is malignant, and it is interesting to see that it drastically
improves performance. Contrary to previous works, few-shot
prompting did not improve the performance in any way and
instead made the model more brittle, mainly responding to
each image as being malignant. This did however result in
no refusals to classify, which could be both good and bad.
One could say that the model’s inability to classify is bad
because it did not provide an adequate answer, or one that the
user was looking for. However, in a high-risk domain such as
healthcare, it is important for users to understand the risks of
solely using a language model to help with diagnosis. Most
literature points to the use of Al to augment healthcare rather
than replacing healthcare practitioners, and a model’s ability
to hedge and provide advice on seeking help from an expert
is much more helpful than a simple classification in the real
world. For this same reason, chain-of-thought prompting is
better than the others because it increases the explainability
of the model for the end user. This allows users to judge for
themselves whether the model’s ’thinking’ is sound, and thus
how much weight they should put into the final diagnosis. At
the same time, it is important to note that the text output may
not correlate at all with the internal workings of the model but
it does help determine the amount of trust one should put in
the model.

Furthermore, classification by LLaVA (zero-shot and chain-
of-thought prompt) and Claude 3 Opus (few-shot prompt) was
heavily skewed towards malignant even thought the dataset
contained much more benign images. This may have also
been influenced by the ordering of ”A) Malignant or B)
Benign” in the prompts, and it would be interesting to compare
performance when the two are switched.

Lastly, we also examined how the models performed on
different skin tones, and found that accuracy and recall rates
did not significantly differ. However, all of the models had sig-
nificantly higher precision for classifying medium skin tones.
This correlates with the fact that FST III is the most common
skin type in the United States (48%) [28]. The precision
for light and dark skin tones was pretty similar, but most
times there was worse performance on the dark skin tones.
Furthermore, with the more brittle models - LLaVA (chain-



of-thought prompt) and Claude 3 Opus (few-shot prompt) -
the recall rate was lowest for dark skin tones.

VI. CONCLUSION AND FUTURE WORK

Overall, this work showed that there are significant dif-
ferences in the performance of proprietary and open-source
visual-language models for diagnosing dermatological skin
conditions. This may be due to differences in training data,
access to compute, or fine-tuning (e..g, using RLHF). We
also found that chain-of-thought prompting resulted in the
best performance. Zero-shot prompting was similar in terms
of accuracy but it refused to classify more than half of the
images, whereas chain-of-thought prompting resulted in less
than 15% of the images being unclassified. Lastly, we found
that all models had better precision on medium skin tones.
However, the accuracy and recall rates of all models were
similar for all skin tones.

A limitation of this work was that only two visual-language
models were analyzed, and these findings may not generalize
to other models - especially ones that are fine-tuned on medical
data and developed for medical purposes. For this reason, it
would be interesting to explore how medical visual-language
models such as SkinGPT4 and Visual Med-Alpaca. It is also
important to analyze other popular, commonly used, models
such as GPT-4V because these are the ones that the general
public are most likely to use for analyzing their own skin
conditions.

We also only analyzed whether models could classify
between benign and malignant skin lesions, however that
is not how diagnosis occurs in a real-world setting. It is
important to properly triage patients based on malignancy
and Al systems could help with this, but people without easy
access to dermatology care may be more inclined to simply
use Al systems to help diagnose their condition. If so, it is
important to also assess more granular diagnoses (e.g., whether
the skin lesion is a carcinoma, melanoma. etc.).

Furthermore, a dermatology diagnosis would not solely be
based on an image, but instead contain information about
patient history, symptoms, and duration of the condition which
the DDI dataset did not provide. Thus, future auditing should
be done using datasets that better represent real world sce-
narios such as the Skin Condition Image Network (SCIN)
dataset [29]. SCIN also includes information about patient sex,
ethnicity, and race which can help further analyze differences
in model performance for subgroups.
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VII. APPENDIX

A. Prompting Techniques

Three different prompts were used, shown in the text
shown below where the image is specified with [IMAGE].
Zero-shot Prompt
You are a helpful dermatology medical assistant. You are
being provided with an image of a dermatological skin
condition, and you are to categorize whether this condition is
A) malignant or B) benign.

For our purposes, we define the following:

(definitions)

Malignant is defined as (of a disease) very virulent or
infectious OR (of a tumour) tending to invade normal tissue
or to recur after removal; cancerous.

Benign is defined as (of a disease) not harmful in effect OR
(of a tumour) not malignant.

(/definitions)

Always respond by answering with only ”A” or only "B”,
and no other explanation or prelude.

[IMAGE]

Few-shot Prompt

You are a helpful dermatology medical assistant. You
are being provided with images of a dermatological skin
condition, and you are to categorize whether this condition
is A) malignant or B) benign. Follow the examples and
categorize the last image.

For our purposes, we define the following:

(definitions)

Malignant is defined as (of a disease) very virulent or
infectious OR (of a tumour) tending to invade normal tissue
or to recur after removal; cancerous.

Benign is defined as (of a disease) not harmful in effect OR
(of a tumour) not malignant.

(/definitions)

Always respond by answering with only ”A” or only “B”,
and no other explanation or prelude.

(examples)

(example 1)

[IMAGE 5]

Answer: A

(/fexample 1)

(example 2)

[IMAGE 42

Answer: B

(fexample 2)

(example 3)

[IMAGE 10]

Answer: A

(/fexample 3)

(example 4)

[IMAGE 36]

Answer: B

(lexample 4)

(example 5)



[IMAGE 1]

Answer: A

(/fexample 5)

(example 6)

[IMAGE 53]

Answer: B

(lexample 6)

(examples)

Now categorize the following image: [[IMAGE]

Chain-of-thought Prompt
You are a helpful dermatology medical assistant. You are
being provided with an image of a dermatological skin
condition, and you are to categorize whether this condition is
A) malignant or B) benign.

For our purposes, we define the following:
(definitions)
Malignant is defined as (of a disease) very virulent or
infectious OR (of a tumour) tending to invade normal tissue
or to recur after removal; cancerous.
Benign is defined as (of a disease) not harmful in effect OR
(of a tumour) not malignant.
(/definitions)

Always respond by explaining your thought process, then
simply ”A” or ”B” in an answer block like this:
reasoning for decision...
(Answer)
AorB
(/Answer)
[IMAGE]

B. Model Performance on different Skin Tones
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