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Benchmark Fetishism: Flaws in Medical AI Model Evaluation

Benchmarking is a core mechanism for measuring progress in artificial intelligence (Al).
Most commonly, a ‘benchmark’ is defined as a combination of a dataset and metric(s) that is
used to evaluate the performance of a model on a particular task (Raji et al. 2021). Achieving
state-of-the-art performance on benchmarks has been synonymous with meaningful advancement
in model capability and performance.

At the same time, it has been said that artificial intelligence has the potential to transform
medicine and clinical care. From improving diagnostic accuracy to optimizing clinical
workflows and unlocking personalized treatments, Al benchmarked at human-level or
“superhuman performance” promises to revolutionize healthcare and patient outcomes.

However, reality has yet to match this potential. Despite the proliferation of medical Al
models that demonstrate remarkable results on benchmarks, comparatively few have seen
significant clinical adoption or real-world impact. Models that appear to equal or exceed human
practitioners in silico often fail to translate those gains into improvements in actual clinical
environments and use cases.

I argue that that this disconnect stems largely from fundamental flaws in the benchmarks
themselves and the ways they are used to evaluate Al models, using examples from general and
medical applications. I will first outline how we are over-relying on benchmarks, then explain
two problems with this approach — what I’ll refer to as the “external” and “internal” flaws with
benchmarking. "External" flaws relate to the lack of scientific rigor and standardization in the
benchmarking process, whereas "internal" flaws are inherent to the design and composition of
the benchmarks themselves. I will also argue that, most importantly, benchmark performance

does not represent how well a model will perform in the real world.
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Overreliance on Benchmarks

While it is important to determine ways to measure progress in the field of artificial
intelligence, there has been an increasing reliance of benchmarks and metrics as the be-all end-
all of evaluation. This results in chasing incremental increases in performance to achieve “state-
of-the-art” rather than hypothesis-based scientific inquiry (Raji et al. 2021). According to Saitta,
benchmark chasing allows researchers to “publish dull papers that proposed small variations of
existing [...] algorithms™ (Raji et al. 2021). This is known as diminishing returns, when
“increasingly large efforts achieve smaller and smaller performance gains” (Varoquaux and
Cheplygina 2022). For example, in 8 public medical imaging challenges (for either disease
diagnosis or image segmentation), the “best” algorithm in 6 of the challenges had performance
gains that were smaller than the expected variance compared to algorithms in the top 10%
performance-wise (Varoquaux and Cheplygina 2022).

This emphasis on performance on benchmarks also influences the direction of Al
development, potentially shifting research in entire fields. For example, due to the popularity of
chess in the 1960s, deep-tree searching and the minimax algorithms dominated the field because
of their effectiveness in improving game performance (Raji et al. 2021). In natural language
processing (NLP), a focus on metrics overtook the rest of the field since it was a key condition
for funding from DARPA, resulting in a lack of funding for projects that did not have immediate
performance gains (Gururaja et al. 2023).

Such tunnel vision in Al development may be due to misaligned incentives in academia.
In a survey, many NLP researchers found that the immediate goal of a research paper was to “get
another 2% [increase in performance] and get the boldface black entry on the table.” (Gururaja et
al. 2023). Publishing especially incentivizes research into “state-of-the-art” models where
reviewers seemed to find improvements on benchmarks to be the only justification in the validity
of a paper (Gururaja et al. 2023). This results in researchers exploiting tricks to achieve “state-of-
the-art” results on benchmarks rather than exploring the “deeper mechanisms by which models
function”, write unnecessarily “math-y” papers, or use suggestive language (e.g., ‘human-level
performance’) when describing their AI model’s efficacy (Varoquaux and Cheplygina 2022;
Gururaja et al. 2023). In a systematic review of more than 150 studies on prediction models,
most articles contained at least 7 examples of ‘spin’ - language exaggerating the benefits while

downplaying the costs, risks, and limitations (Morley 2023). These academic incentives
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undermine the needs of stakeholders such as clinicians and patients (Varoquaux and Cheplygina
2022).

This is not to say that benchmarks are completely irrelevant, but that they not enough —
the goals of Al cannot be fully evaluated through “data-defined benchmarks” (Raji et al. 2021). A
survey of NLP researchers found that benchmarks are necessary, but becoming increasingly
insufficient (Gururaja et al. 2023). There is a similar tendency in medical Al research to focus
solely on technical evaluations rather than performance in real-world, clinical settings (Morley

2023).

“External” Flaws in Benchmarking

The evaluation of Al through benchmarks is not scientifically rigorous and lacks
standardization. This includes data leakage, where many popular large language model (LLM)
benchmarks have been found to leak into the training data of the latest models thus falsely
increasing performance (McIntosh et al. 2024). Synonymously in healthcare, the ‘fingerprinting
phenomenon’ results in different samples of the same patient ending up in both training and
validation datasets where the algorithm learns to recognize that patient rather than markers of the
disease in question (Morley 2023; Varoquaux and Cheplygina 2022). For example, some studies
diagnosing ADHD based on brain imaging performed circular analysis, where they “perform[ed]
feature selection on the full dataset, before cross-validation” (Varoquaux and Cheplygina 2022).

Similarly, there is a prevalence of ‘p-hacking’ in Al research, which occurs when models
overfit to the training data. For example, in a study developing an AI model to detect polyps,
they removed the videos on which the model performed poorly and ones with more than one
polyp (Hicks et al. 2022). Using a subset of the actual dataset can give potentially false
impressions of a model’s actual performance. There are also inconsistencies amongst research
papers in reporting metrics and benchmarks. For example, Area Under Curve (AUC) metrics are
usually referenced as ‘the AUC curve’ even though there are different meanings depending on if
it’s the plotting precision and recall against each other (PR-AUC), or recall and the false-positive
rate (ROC-AUC) (Blagec et al. 2021). Both result in an obfuscation of an Al model’s
performance, making it difficult for the public to interpret findings. Proper scientific

communication is especially important in interdisciplinary domains such as medical Al, where
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healthcare practitioners need to understand what certain benchmarks represent in terms of
clinical care.

Furthermore, only a small subset of benchmarks and metrics tend to be reported. In a
comparative study, the performance of more than three-quarters of benchmark datasets was
represented using only a single metric (Blagec et al. 2021). Specifically, classification metrics
(e.g., accuracy) were the most presented in benchmark papers (Blagec et al. 2021). It is much
easier to present and interpret one metric, but it only provides one perspective on the model’s
performance and devalues others. Calculating a range of metrics, especially for classification
tasks, does not require extra measurements or design considerations because most are based on
the true positive, false positive, true negative, and false negative rates. Thus, a researcher would
exclude them only if they lacked space or knowledge, or were deliberately obfuscating actual
performance (Hicks et al. 2022).

At the same time, there are differences in the interpretation of the same metrics amongst
different domains/datasets and are not comparable even though they are all on the scale of 0-
100%. In botany, for example, 80% accuracy may be sufficient for classifying Irises but would
be dangerous if trying to classify between a poisonous or edible mushroom (Raji et al. 2021). For
unbalanced datasets, which are common in medical applications!, accuracy is a worse indicator
of performance than precision (Blagec et al. 2021). This is due to the ‘accuracy paradox’ where if
class A exists in the dataset 90% of the time and a classifier predicts A for all data points, it will
have an accuracy of 90%. Sensitivity? and specificity® are metrics that are especially critical in
healthcare because they help evaluate the accuracy of a test in correctly identifying patients with
and without a particular condition or disease. However, they are not provided as often by Al
researchers, even when they are working on medical applications (Morley 2023).

It is also extremely difficult to replicate or reproduce findings. In LLMs, for example,
simple changes in text input - switching from 4) to /), or inserting an extra space between the
option and answer — results in up to 5% variance in text output (McIntosh et al. 2024). These
prompts are integral to evaluating LLMs on popular benchmarks such as MMLU and produce

such significant differences in output that there is a whole field dedicated to this, known as

"Malignant, or positive, diagnoses are less common than benign in medical datasets
2 Sensitivity, or the True Positive Rate, measures the proportion of actual positives that are correctly identified
* Specificity, or False Positive Rate, measures the proportion of actual negatives that are correctly identified
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‘prompt engineering’. Furthermore, Al models are increasingly privatized, developed with
proprietary (thus not publicly available) model architecture and datasets which prevents external
researchers from validating model performance. This is especially true in healthcare where
model evaluation omits key details such as training data due to privacy risks, resulting in the
replication rate in clinical decision support system research being 3 in 1000 studies (Morley

2023).

“Internal” Flaws in Benchmarking

Each individual benchmark is value-laden and cannot be treated as neutral — it embodies
a limited, subjective perspective. More recently, benchmarks are being used to define ‘general’
cognitive abilities such as visual or language understanding (Raji et al. 2021). Many of these
benchmarks were originally developed to measure performance on a tightly scoped, finite, and
domain-specific task such as automatic speech recognition (ASR) or machine translation (MT).
ImageNet*, for example, was described by its creators as “the most comprehensive and diverse
coverage of the image world” and an “attempt to map the entire world of objects” (Raji et al.
2021). However, as we’ll see later, this is an inaccurate representation of the benchmark.
Inversely, exams and scientific texts have been hastily converted into benchmarks and used to
boast about the model’s performance. Most notably, OpenAl’s GPT-4 was evaluated on “exams
that were originally designed for humans” including the bar exam (OpenAl 2023). In healthcare,
the United States Medical Licensing Examinations (USMLE) exam is most commonly used to
compare the ability of LLMs to healthcare practitioners. However, it has been shown that such
exams “fail to fully assess the skills required for modern medical practice” (Mbakwe et al. 2023).
This is because the ability to “regurgitate mechanistic models of health and disease” may not be
as important as critical thinking skills and respect for patients in a clinician (Mbakwe et al.
2023).

Image datasets are a great example of this. It was found that images in the same category
but different datasets were distinguishable from one another — each image encodes a certain
perspective when captured (Raji et al. 2021). Specifically in ImageNet, most objects tend to be
centred in pictures which is not usually how these objects would “naturally appear” (Raji et al.

2021). There is also a significant lack of geo-diversity, with 45% of the images sourced from the

4 ImageNet is a large database of images labelled according to the WordNet hierarchy (Raji et al. 2021)
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United States and over 60% from the Global North (Raji et al. 2021). On the other hand, only
1% and 1.2% of images are from China and India, respectively, even though those countries are
the most populous countries on the planet (Raji et al. 2021). Furthermore, marginalized people
are underrepresented and often tagged with racial or ethnic slurs in them. These perspectives are
similarly encoded in medical imaging datasets, which tend to comprise of patients who received
clinical care at one of the elite few institutions in North America and Europe (Varoquaux and
Cheplygina 2022). Furthermore, most dermatology datasets contain images of light-skinned
patients (Daneshjou et al. 2022). Thus, benchmarking on datasets that are skewed towards
WEIRD? people hides unequal performance on underrepresented groups, pushing them to the
margins while also justifying the deployment of biased models®.

There is also little to no intentional data curation during the development of most
benchmarks. ImageNet adapted the English-language WordNet hierarchy despite the fact that it
was developed in a different field for a different purpose (Raji et al. 2021). Furthermore, the
images were labelled arbitrarily (e.g., from specific dog breeds to a generic ‘New Zealand
beach’) and used a range of derogatory and offensive categories (Raji et al. 2021). Similarly, the
GLUE benchmark was curated based on what a select few NLP researchers thought to be
interesting at the time (Raji et al. 2021). As a result, the final benchmark neither systematically
mapped out a range of specific linguistic skills nor present a truly varied range of ways to deploy
linguistic knowledge in comprehension.

There have also been cases of Al “inbreeding” during the development of benchmarks. A
survey found that 9 out of 23 LLM benchmark datasets were generated by LLMs themselves
(MclIntosh et al. 2024). Similarly, the ChestX-ray14 dataset produced labels using NLP from
radiology reports (Gichoya et al. 2018). Both datasets now encode the biases and inaccuracies of
the models used to generate the data, making any evaluations based on these benchmarks

unreliable.

S WEIRD is an acronym for Western, Educated, Industrialized, Rich and Democratic
& Most medical datasets do not include data about the patient’s age, sex, or gender which makes it even more
excruciatingly difficult to analyze performance amongst different subgroups



PHIL4521

Benchmark performance does not represent real-world performance

The UCI Machine Learning repository is a set of benchmarks for a variety of individual
subtasks, including Iris, Adult, Wine, and Breast Cancer classification datasets (Raji et al. 2021).
The popularity of these benchmarks has led to hordes of Al researchers working on developing
the best Iris classifier, but do botanists truly need this type of model? Are they publishing about
the topic in journals? NLP researchers similarly state that their “field that, like fundamentally, is
about something about people, knows remarkably little about people” (Gururaja et al. 2023).
Many benchmarks have been created perpendicular to needs in the real world.

This phenomenon can be described by the “measure-target confusion”, coined by Miiller
(2020). We observe progress in Al development and then try to see how this can be measured —
via benchmarks. But then we turn the measure into the target: We ask for research that improves
on benchmarks. The example Miiller provides is progress of individual scientists: we need
quantifiable metrics to evaluate scientific success so publication numbers, h-index, funding, etc.
are used to make future decisions. However, this results in researchers targeting the metrics
instead of the original target - scientific progress. Note that this is also an “internal” flaw of
benchmarks and one so significant that it deserves a more thorough examination’.

This confusion can easily be observed in medical Al benchmarks. A recent survey
showed that very few benchmarks of direct clinical relevance exist, and the ones that do fail to
cover many tasks that clinicians most want to see addressed (Blagec et al. 2023). In medical
imaging specifically, there is enormous research showing state-of-the-art performance on
benchmarks with no “practical improvement” for the clinical problem (Varoquaux and
Cheplygina 2022). Similarly, 62 studies in Al for COVID were reviewed, and none of them had
potential for clinical use (Varoquaux and Cheplygina 2022). There may be a few reasons this
disjointedness exists.

In some cases, the data distribution in a benchmark may not match the target population
where the model was intended to be deployed. A review found that more than half of the studies
(54%) provided no clarity on whether the population included in the study matched, or at least
aligned to, the population of the area (Morley 2023). The same phenomenon has been
demonstrated in medical imaging (chest X-rays, retinal imaging, brain imaging, histopathology

and dermatology) due to privacy/security concerns as well as disparities in who has access to a

7 At least, I think it does!
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healthcare system (Varoquaux and Cheplygina 2022). Evaluation on the same data pool from one
of the few benchmark datasets does not assess clinical relevance since there could be key
differences in the benchmark and the actual population the model will perform on.

The benchmark may also include proxies that would not be present in real-time clinical
data. For example, on chest X-ray datasets, images for the “pneumothorax” condition sometimes
show a chest drain, which is a treatment for this condition, and which would not yet be present
before diagnosis (Varoquaux and Cheplygina 2022). Similarly, a dataset of different skin
conditions may include markings placed by the dermatologist which would usually not be
present before consultation.

Even if the above two biases are accounted for, real data is inherently messier than clean,
pre-processed benchmark datasets. Benchmark creators may remove imperfect data samples, or
outliers. For example, a system trained only on high-quality images might provide incorrect
diagnosis when classifying images of low quality, with different lighting, or other differences in
real-world clinical settings. Furthermore, data for a single patient may be stored in “a multitude
of medical imaging archival systems, pathology systems, EHRs, electronic prescribing tools and
insurance databases” (Kelly et al. 2019). This data is not prepared to be inputted into an Al
model.

Benchmark datasets also use historically labelled data, with most evaluations of medical
Al models done retrospectively (Kelly et al. 2019). Patient populations and clinical practices
change over time, but AI models do not (and tend to be brittle!). Evaluating solely on historical
data does not guarantee that the model will perform well on future patients. Currently, no
benchmarks exist to evaluate the model’s ability to respond to such data drift.

Outside of the data, this disconnect may also be because Al researcher’s lack proper
understanding of the medical field and clinical care. An example of this in radiology Al is the
CheXNet model which claimed to diagnose pneumonia, without specifying whether it is clinical
or radiological pneumonia® (Gichoya et al. 2018). Thus, the benchmarks used to evaluate
CheXNet performance clearly do not have any clinical significance. Diagnosis is rarely a binary
classification problem as current benchmarks suggest, but instead require complex decision

making.

8 In comparison, understanding the difference between the two types of pneumonia is said to be “common sense” to
clinicians
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Moving Beyond Benchmarks

For the reasons outlined above, it is imperative that Al research moves beyond (perhaps
away from) benchmarks and instead refocus on the original goals of Al development. Gururaja et
al. state that we should move on from benchmarks not when they are saturated but when “it
wouldn’t really improve the world to improve this performance anymore” (2023). By over-
relying on and misusing flawed benchmarks, medical Al research risks sidelining model
development and giving false impressions of capability. Shifting to a more nuanced, clinically
grounded approach to model evaluation is crucial for closing the gap between medical Al's
imagined potential and real-world utility.

In healthcare, this means improving clinical care by integrating technology within the
current workflow. We should also aim to improve upon the “external” flaws of benchmarking by
emphasizing the importance of scientific communication amongst Al researchers and ensuring
they fairly interpret the implications of good benchmark performance. However, ultimately what
matters is whether the model resulted in a beneficial change in patient care. To do this, Al
researchers must collaborate with healthcare practitioners to understand what parts of their job is
the most burdensome, such as routine documentation and patient data administration (Blagec et
al. 2023). There should also be a greater focus on evaluating Al models during the deployment
stage, with consistent iterations to ensure it is integrated properly — “even if the system’s
knowledge is indeed accurate, complete, and consistent, it will be of little help if it’s clinical
interface is faulty.” (Morley 2023). Lastly, but most importantly, stakeholders including patients
and healthcare practitioners should be deeply involved in the development of medical Al models
to ensure that to measurements of progress translate computational achievement into meaningful

clinical impact.
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