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Benchmark Fetishism: Flaws in Medical AI Model Evaluation 
Benchmarking is a core mechanism for measuring progress in artificial intelligence (AI). 

Most commonly, a ‘benchmark’ is defined as a combination of a dataset and metric(s) that is 

used to evaluate the performance of a model on a particular task (Raji et al. 2021). Achieving 

state-of-the-art performance on benchmarks has been synonymous with meaningful advancement 

in model capability and performance.  

At the same time, it has been said that artificial intelligence has the potential to transform 

medicine and clinical care. From improving diagnostic accuracy to optimizing clinical 

workflows and unlocking personalized treatments, AI benchmarked at human-level or 

“superhuman performance” promises to revolutionize healthcare and patient outcomes. 

However, reality has yet to match this potential. Despite the proliferation of medical AI 

models that demonstrate remarkable results on benchmarks, comparatively few have seen 

significant clinical adoption or real-world impact. Models that appear to equal or exceed human 

practitioners in silico often fail to translate those gains into improvements in actual clinical 

environments and use cases. 

I argue that that this disconnect stems largely from fundamental flaws in the benchmarks 

themselves and the ways they are used to evaluate AI models, using examples from general and 

medical applications. I will first outline how we are over-relying on benchmarks, then explain 

two problems with this approach – what I’ll refer to as the “external” and “internal” flaws with 

benchmarking. "External" flaws relate to the lack of scientific rigor and standardization in the 

benchmarking process, whereas "internal" flaws are inherent to the design and composition of 

the benchmarks themselves. I will also argue that, most importantly, benchmark performance 

does not represent how well a model will perform in the real world. 
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Overreliance on Benchmarks 

While it is important to determine ways to measure progress in the field of artificial 

intelligence, there has been an increasing reliance of benchmarks and metrics as the be-all end-

all of evaluation. This results in chasing incremental increases in performance to achieve “state-

of-the-art” rather than hypothesis-based scientific inquiry (Raji et al. 2021). According to Saitta, 

benchmark chasing allows researchers to “publish dull papers that proposed small variations of 

existing […] algorithms” (Raji et al. 2021). This is known as diminishing returns, when 

“increasingly large efforts achieve smaller and smaller performance gains” (Varoquaux and 

Cheplygina 2022). For example, in 8 public medical imaging challenges (for either disease 

diagnosis or image segmentation), the “best” algorithm in 6 of the challenges had performance 

gains that were smaller than the expected variance compared to algorithms in the top 10% 

performance-wise (Varoquaux and Cheplygina 2022). 

 This emphasis on performance on benchmarks also influences the direction of AI 

development, potentially shifting research in entire fields. For example, due to the popularity of 

chess in the 1960s, deep-tree searching and the minimax algorithms dominated the field because 

of their effectiveness in improving game performance (Raji et al. 2021). In natural language 

processing (NLP), a focus on metrics overtook the rest of the field since it was a key condition 

for funding from DARPA, resulting in a lack of funding for projects that did not have immediate 

performance gains (Gururaja et al. 2023). 

 Such tunnel vision in AI development may be due to misaligned incentives in academia. 

In a survey, many NLP researchers found that the immediate goal of a research paper was to “get 

another 2% [increase in performance] and get the boldface black entry on the table.” (Gururaja et 

al. 2023). Publishing especially incentivizes research into “state-of-the-art” models where 

reviewers seemed to find improvements on benchmarks to be the only justification in the validity 

of a paper (Gururaja et al. 2023). This results in researchers exploiting tricks to achieve “state-of-

the-art” results on benchmarks rather than exploring the “deeper mechanisms by which models 

function”, write unnecessarily “math-y” papers, or use suggestive language (e.g., ‘human-level 

performance’) when describing their AI model’s efficacy (Varoquaux and Cheplygina 2022; 

Gururaja et al. 2023). In a systematic review of more than 150 studies on prediction models, 

most articles contained at least 7 examples of ‘spin’ - language exaggerating the benefits while 

downplaying the costs, risks, and limitations (Morley 2023). These academic incentives 
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undermine the needs of stakeholders such as clinicians and patients (Varoquaux and Cheplygina 

2022). 

 This is not to say that benchmarks are completely irrelevant, but that they not enough – 

the goals of AI cannot be fully evaluated through “data-defined benchmarks” (Raji et al. 2021). A 

survey of NLP researchers found that benchmarks are necessary, but becoming increasingly 

insufficient (Gururaja et al. 2023). There is a similar tendency in medical AI research to focus 

solely on technical evaluations rather than performance in real-world, clinical settings (Morley 

2023). 

 

“External” Flaws in Benchmarking 

 The evaluation of AI through benchmarks is not scientifically rigorous and lacks 

standardization. This includes data leakage, where many popular large language model (LLM) 

benchmarks have been found to leak into the training data of the latest models thus falsely 

increasing performance (McIntosh et al. 2024). Synonymously in healthcare, the ‘fingerprinting 

phenomenon’ results in different samples of the same patient ending up in both training and 

validation datasets where the algorithm learns to recognize that patient rather than markers of the 

disease in question (Morley 2023; Varoquaux and Cheplygina 2022). For example, some studies 

diagnosing ADHD based on brain imaging performed circular analysis, where they “perform[ed] 

feature selection on the full dataset, before cross-validation” (Varoquaux and Cheplygina 2022). 

 Similarly, there is a prevalence of ‘p-hacking’ in AI research, which occurs when models 

overfit to the training data. For example, in a study developing an AI model to detect polyps, 

they removed the videos on which the model performed poorly and ones with more than one 

polyp  (Hicks et al. 2022). Using a subset of the actual dataset can give potentially false 

impressions of a model’s actual performance. There are also inconsistencies amongst research 

papers in reporting metrics and benchmarks. For example, Area Under Curve (AUC) metrics are 

usually referenced as ‘the AUC curve’ even though there are different meanings depending on if 

it’s the plotting precision and recall against each other (PR-AUC), or recall and the false-positive 

rate (ROC-AUC) (Blagec et al. 2021). Both result in an obfuscation of an AI model’s 

performance, making it difficult for the public to interpret findings. Proper scientific 

communication is especially important in interdisciplinary domains such as medical AI, where 
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healthcare practitioners need to understand what certain benchmarks represent in terms of 

clinical care. 

 Furthermore, only a small subset of benchmarks and metrics tend to be reported. In a 

comparative study, the performance of more than three-quarters of benchmark datasets was 

represented using only a single metric (Blagec et al. 2021). Specifically, classification metrics 

(e.g., accuracy) were the most presented in benchmark papers (Blagec et al. 2021). It is much 

easier to present and interpret one metric, but it only provides one perspective on the model’s 

performance and devalues others. Calculating a range of metrics, especially for classification 

tasks, does not require extra measurements or design considerations because most are based on 

the true positive, false positive, true negative, and false negative rates. Thus, a researcher would 

exclude them only if they lacked space or knowledge, or were deliberately obfuscating actual 

performance (Hicks et al. 2022). 

At the same time, there are differences in the interpretation of the same metrics amongst 

different domains/datasets and are not comparable even though they are all on the scale of 0-

100%. In botany, for example, 80% accuracy may be sufficient for classifying Irises but would 

be dangerous if trying to classify between a poisonous or edible mushroom (Raji et al. 2021). For 

unbalanced datasets, which are common in medical applications1, accuracy is a worse indicator 

of performance than precision (Blagec et al. 2021). This is due to the ‘accuracy paradox’ where if 

class A exists in the dataset 90% of the time and a classifier predicts A for all data points, it will 

have an accuracy of 90%. Sensitivity2 and specificity3 are metrics that are especially critical in 

healthcare because they help evaluate the accuracy of a test in correctly identifying patients with 

and without a particular condition or disease. However, they are not provided as often by AI 

researchers, even when they are working on medical applications (Morley 2023). 

 It is also extremely difficult to replicate or reproduce findings. In LLMs, for example, 

simple changes in text input - switching from A) to 1), or inserting an extra space between the 

option and answer – results in up to 5% variance in text output (McIntosh et al. 2024). These 

prompts are integral to evaluating LLMs on popular benchmarks such as MMLU and produce 

such significant differences in output that there is a whole field dedicated to this, known as 

 
1Malignant, or positive, diagnoses are less common than benign in medical datasets 
2 Sensitivity, or the True Positive Rate, measures the proportion of actual positives that are correctly identified 
3 Specificity, or False Positive Rate, measures the proportion of actual negatives that are correctly identified  
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‘prompt engineering’. Furthermore, AI models are increasingly privatized, developed with 

proprietary (thus not publicly available) model architecture and datasets which prevents external 

researchers from validating model performance. This is especially true in healthcare where 

model evaluation omits key details such as training data due to privacy risks, resulting in the 

replication rate in clinical decision support system research being 3 in 1000 studies (Morley 

2023). 

 

“Internal” Flaws in Benchmarking 

 Each individual benchmark is value-laden and cannot be treated as neutral – it embodies 

a limited, subjective perspective. More recently, benchmarks are being used to define ‘general’ 

cognitive abilities such as visual or language understanding (Raji et al. 2021). Many of these 

benchmarks were originally developed to measure performance on a tightly scoped, finite, and 

domain-specific task such as automatic speech recognition (ASR) or machine translation (MT). 

ImageNet4, for example, was described by its creators as “the most comprehensive and diverse 

coverage of the image world” and an “attempt to map the entire world of objects” (Raji et al. 

2021). However, as we’ll see later, this is an inaccurate representation of the benchmark. 

Inversely, exams and scientific texts have been hastily converted into benchmarks and used to 

boast about the model’s performance. Most notably, OpenAI’s GPT-4 was evaluated on “exams 

that were originally designed for humans” including the bar exam (OpenAI 2023). In healthcare, 

the United States Medical Licensing Examinations (USMLE) exam is most commonly used to 

compare the ability of LLMs to healthcare practitioners. However, it has been shown that such 

exams “fail to fully assess the skills required for modern medical practice” (Mbakwe et al. 2023). 

This is because the ability to “regurgitate mechanistic models of health and disease” may not be 

as important as critical thinking skills and respect for patients in a clinician (Mbakwe et al. 

2023).  

Image datasets are a great example of this. It was found that images in the same category 

but different datasets were distinguishable from one another – each image encodes a certain 

perspective when captured (Raji et al. 2021). Specifically in ImageNet, most objects tend to be 

centred in pictures which is not usually how these objects would “naturally appear” (Raji et al. 

2021). There is also a significant lack of geo-diversity, with 45% of the images sourced from the 

 
4 ImageNet is a large database of images labelled according to the WordNet hierarchy (Raji et al. 2021) 
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United States and over 60% from the Global North (Raji et al. 2021). On the other hand, only  

1% and 1.2% of images are from China and India, respectively, even though those countries are 

the most populous countries on the planet (Raji et al. 2021). Furthermore, marginalized people 

are underrepresented and often tagged with racial or ethnic slurs in them. These perspectives are 

similarly encoded in medical imaging datasets, which tend to comprise of patients who received 

clinical care at one of the elite few institutions in North America and Europe (Varoquaux and 

Cheplygina 2022). Furthermore, most dermatology datasets contain images of light-skinned 

patients (Daneshjou et al. 2022). Thus, benchmarking on datasets that are skewed towards 

WEIRD5 people hides unequal performance on underrepresented groups, pushing them to the 

margins while also justifying the deployment of biased models6.  

There is also little to no intentional data curation during the development of most 

benchmarks. ImageNet adapted the English-language WordNet hierarchy despite the fact that it 

was developed in a different field for a different purpose (Raji et al. 2021). Furthermore, the 

images were labelled arbitrarily (e.g., from specific dog breeds to a generic ‘New Zealand 

beach’) and used a range of derogatory and offensive categories (Raji et al. 2021). Similarly, the 

GLUE benchmark was curated based on what a select few NLP researchers thought to be 

interesting at the time (Raji et al. 2021). As a result, the final benchmark neither systematically 

mapped out a range of specific linguistic skills nor present a truly varied range of ways to deploy 

linguistic knowledge in comprehension.  

There have also been cases of AI “inbreeding” during the development of benchmarks. A 

survey found that 9 out of 23 LLM benchmark datasets were generated by LLMs themselves 

(McIntosh et al. 2024). Similarly, the ChestX-ray14 dataset produced labels using NLP from 

radiology reports (Gichoya et al. 2018). Both datasets now encode the biases and inaccuracies of 

the models used to generate the data, making any evaluations based on these benchmarks 

unreliable. 

 

 

 

 
5 WEIRD is an acronym for Western, Educated, Industrialized, Rich and Democratic 
6 Most medical datasets do not include data about the patient’s age, sex, or gender which makes it even more 
excruciatingly difficult to analyze performance amongst different subgroups 
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Benchmark performance does not represent real-world performance 

The UCI Machine Learning repository is a set of benchmarks for a variety of individual 

subtasks, including Iris, Adult, Wine, and Breast Cancer classification datasets (Raji et al. 2021). 

The popularity of these benchmarks has led to hordes of AI researchers working on developing 

the best Iris classifier, but do botanists truly need this type of model? Are they publishing about 

the topic in journals? NLP researchers similarly state that their “field that, like fundamentally, is 

about something about people, knows remarkably little about people” (Gururaja et al. 2023). 

Many benchmarks have been created perpendicular to needs in the real world. 

This phenomenon can be described by the “measure-target confusion”, coined by Müller 

(2020). We observe progress in AI development and then try to see how this can be measured – 

via benchmarks. But then we turn the measure into the target: We ask for research that improves 

on benchmarks. The example Müller provides is progress of individual scientists: we need 

quantifiable metrics to evaluate scientific success so publication numbers, h-index, funding, etc. 

are used to make future decisions. However, this results in researchers targeting the metrics 

instead of the original target - scientific progress. Note that this is also an “internal” flaw of 

benchmarks and one so significant that it deserves a more thorough examination7. 

This confusion can easily be observed in medical AI benchmarks. A recent survey 

showed that very few benchmarks of direct clinical relevance exist, and the ones that do fail to 

cover many tasks that clinicians most want to see addressed (Blagec et al. 2023). In medical 

imaging specifically, there is enormous research showing state-of-the-art performance on 

benchmarks with no “practical improvement” for the clinical problem (Varoquaux and 

Cheplygina 2022). Similarly, 62 studies in AI for COVID were reviewed, and none of them had 

potential for clinical use (Varoquaux and Cheplygina 2022). There may be a few reasons this 

disjointedness exists. 

In some cases, the data distribution in a benchmark may not match the target population 

where the model was intended to be deployed. A review found that more than half of the studies 

(54%) provided no clarity on whether the population included in the study matched, or at least 

aligned to, the population of the area (Morley 2023). The same phenomenon has been 

demonstrated in medical imaging (chest X-rays, retinal imaging, brain imaging, histopathology 

and dermatology) due to privacy/security concerns as well as disparities in who has access to a 

 
7 At least, I think it does! 
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healthcare system (Varoquaux and Cheplygina 2022). Evaluation on the same data pool from one 

of the few benchmark datasets does not assess clinical relevance since there could be key 

differences in the benchmark and the actual population the model will perform on. 

The benchmark may also include proxies that would not be present in real-time clinical 

data. For example, on chest X-ray datasets, images for the “pneumothorax” condition sometimes 

show a chest drain, which is a treatment for this condition, and which would not yet be present 

before diagnosis (Varoquaux and Cheplygina 2022). Similarly, a dataset of different skin 

conditions may include markings placed by the dermatologist which would usually not be 

present before consultation. 

Even if the above two biases are accounted for, real data is inherently messier than clean, 

pre-processed benchmark datasets. Benchmark creators may remove imperfect data samples, or 

outliers. For example, a system trained only on high-quality images might provide incorrect 

diagnosis when classifying images of low quality, with different lighting, or other differences in 

real-world clinical settings. Furthermore, data for a single patient may be stored in “a multitude 

of medical imaging archival systems, pathology systems, EHRs, electronic prescribing tools and 

insurance databases” (Kelly et al. 2019). This data is not prepared to be inputted into an AI 

model. 

Benchmark datasets also use historically labelled data, with most evaluations of medical 

AI models done retrospectively (Kelly et al. 2019). Patient populations and clinical practices 

change over time, but AI models do not (and tend to be brittle!). Evaluating solely on historical 

data does not guarantee that the model will perform well on future patients. Currently, no 

benchmarks exist to evaluate the model’s ability to respond to such data drift. 

Outside of the data, this disconnect may also be because AI researcher’s lack proper 

understanding of the medical field and clinical care. An example of this in radiology AI is the 

CheXNet model which claimed to diagnose pneumonia, without specifying whether it is clinical 

or radiological pneumonia8 (Gichoya et al. 2018). Thus, the benchmarks used to evaluate 

CheXNet performance clearly do not have any clinical significance. Diagnosis is rarely a binary 

classification problem as current benchmarks suggest, but instead require complex decision 

making. 

 
8 In comparison, understanding the difference between the two types of pneumonia is said to be “common sense” to 
clinicians  
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Moving Beyond Benchmarks 

For the reasons outlined above, it is imperative that AI research moves beyond (perhaps 

away from) benchmarks and instead refocus on the original goals of AI development. Gururaja et 

al. state that we should move on from benchmarks not when they are saturated but when “it 

wouldn’t really improve the world to improve this performance anymore” (2023). By over-

relying on and misusing flawed benchmarks, medical AI research risks sidelining model 

development and giving false impressions of capability. Shifting to a more nuanced, clinically 

grounded approach to model evaluation is crucial for closing the gap between medical AI's 

imagined potential and real-world utility.  

In healthcare, this means improving clinical care by integrating technology within the 

current workflow. We should also aim to improve upon the “external” flaws of benchmarking by 

emphasizing the importance of scientific communication amongst AI researchers and ensuring 

they fairly interpret the implications of good benchmark performance. However, ultimately what 

matters is whether the model resulted in a beneficial change in patient care. To do this, AI 

researchers must collaborate with healthcare practitioners to understand what parts of their job is 

the most burdensome, such as routine documentation and patient data administration (Blagec et 

al. 2023). There should also be a greater focus on evaluating AI models during the deployment 

stage, with consistent iterations to ensure it is integrated properly – “even if the system’s 

knowledge is indeed accurate, complete, and consistent, it will be of little help if it’s clinical 

interface is faulty.” (Morley 2023). Lastly, but most importantly, stakeholders including patients 

and healthcare practitioners should be deeply involved in the development of medical AI models 

to ensure that to measurements of progress translate computational achievement into meaningful 

clinical impact. 
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